Could Fish Help Us Treat Cancer?: Study of Pore Formation by Piscidin-1

Jorge Hernandez, MML/NCNR (IBBR)

Clemson University '15, Bioengineering

Mentor: Ella Mihailescu

Antimicrobial Peptides

- Part of the innate immune system of organisms across all classes of life
 - Help fight off diseases, infections
 - Have different mechanisms of action
- Short: 12-50 Amino Acids long
- High AMP content in marine fish
 - Teleost fish (ray finned)
 - Piscidin-1

Piscidin-1

- Piscidin-1 (P-1) or Moronecidin
- Found in mast cells of Hybrid Striped Bass
- 22 Amino Acids
 - FFHHIFRGIVHVGKTIHRLVTG
 - MW: 2573 Da
- Unstructured in water
- Alpha helix in membranes
- Amphipathic, cationic (+)
 - Antimicrobial activity

Piscidin-1

- Antimicrobial Activity
 - Gram-positive and Gram-negative bacteria
 - Dye leakage experiments
 - Some cancer cells
 - Possible therapeutic agent

Lin H –J. et al , Zool. Sci 29 (2012)

Proposed Mechanism

Unstructured in solution

Favorable interaction with the bilayer

side

Circular Dichroism (CD)

- Different absorbance of right/left polarized light due to asymmetry of molecule
 - CD spectra changes with secondary structure
- IBBR spectropolarimeter

E₀: plane-polarized beam

E : elliptically polarized beam

Circular Dichroism (CD)

How to study pore formation?

- Vesicles formed from:
 - POPC/POPG (3:1)

POPC (no net charge)

POPG (net (-) charge)

- Vesicles formed by:
 - Mixing lipids and peptide in organic solvents

- Vesicles formed by:
 - Drying organic solvent and hydrating with H₂O
 - Lipid vesicles form spontaneously

 Deposit vesicles with peptide onto a substrate and let them dry

 Deposit vesicles with peptide onto a substrate and let them dry

- Liquid crystal structure upon hydration of sample
 - Periodic structure -> diffraction measurements

Bragg's Diffraction

- Electromagnetic beams directed onto lattice, diffracted elastically: diffraction spectra
 - Peaks: constructive interference, repeat distance
 - Intensity: structure factors, sample profile

X-ray Diffraction

- Out of Plane XRD
- IBBR X-ray diffractometer

Out of Plane XRD

Fourier Analysis

Effects of increasing P-1 content on lipid bilayer

SANS

- Momentum transfer vector Q parallel to bilayers
 - Study in-plane features: pores, with D₂O contrast
- NCNR NGB30 SANS

SANS

Neutron Diffraction

- Out of Plane
- Use of contrast (labels, H₂O-D₂O exchange)
- NCNR MAGIK

ND: Peptide Distribution

Labeled Unlabeled

ddP1 FFHHIFRGIVHVGKTIHRLVTG

ND: Water Distribution

Fourier Analysis

Effect of P-1 on Lipid Membrane

Effect of P-1 on Lipid Membrane

Conclusion

Acknowledgements

- NIST SURF 2014 Directors
 - Lisa, Terrell
- IBBR
 - John Marino's group
 - Myriam Cotten (Hamilton College)
- NCNR
 - Julie Borchers
 - Prof. David Worcester
 - SANS
 - Cedric Gagnon
 - Yun Liu
 - Paul Butler
 - MAGIK
 - Brian Maranville

NSF Grant 70NANB14H119